Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38659878

RESUMEN

Appendicular osteosarcoma was diagnosed and treated in a pair of littermate Rottweiler dogs, resulting in distinctly different clinical outcomes despite similar therapy within the context of a prospective, randomized clinical trial (NCI-COTC021/022). Histopathology, immunohistochemistry, mRNA sequencing, and targeted DNA hotspot sequencing techniques were applied to both dogs' tumors to define factors that could underpin their differential response to treatment. We describe the comparison of their clinical, histologic and molecular features, as well as those from a companion cohort of Rottweiler dogs, providing new insight into potential prognostic biomarkers for canine osteosarcoma.

2.
Commun Biol ; 6(1): 856, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37591946

RESUMEN

Canine osteosarcoma is increasingly recognized as an informative model for human osteosarcoma. Here we show in one of the largest clinically annotated canine osteosarcoma transcriptional datasets that two previously reported, as well as de novo gene signatures devised through single sample Gene Set Enrichment Analysis (ssGSEA), have prognostic utility in both human and canine patients. Shared molecular pathway alterations are seen in immune cell signaling and activation including TH1 and TH2 signaling, interferon signaling, and inflammatory responses. Virtual cell sorting to estimate immune cell populations within canine and human tumors showed similar trends, predominantly for macrophages and CD8+ T cells. Immunohistochemical staining verified the increased presence of immune cells in tumors exhibiting immune gene enrichment. Collectively these findings further validate naturally occurring osteosarcoma of the pet dog as a translationally relevant patient model for humans and improve our understanding of the immunologic and genomic landscape of the disease in both species.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Animales , Perros , Pronóstico , Transcriptoma , Genómica , Osteosarcoma/genética , Osteosarcoma/veterinaria , Neoplasias Óseas/genética , Neoplasias Óseas/veterinaria
3.
Pharmacol Res Perspect ; 11(1): e01052, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36631976

RESUMEN

Vinblastine (VBL) is a vinca alkaloid-class cytotoxic chemotherapeutic that causes microtubule disruption and is typically used to treat hematologic malignancies. VBL is characterized by a narrow therapeutic index, with key dose-limiting toxicities being myelosuppression and neurotoxicity. Pharmacokinetics (PK) of VBL is primarily driven by ABCB1-mediated efflux and CYP3A4 metabolism, creating potential for drug-drug interaction. To characterize sources of variability in VBL PK, we developed a physiologically based pharmacokinetic (PBPK) model in Mdr1a/b(-/-) knockout and wild-type mice by incorporating key drivers of PK, including ABCB1 efflux, CYP3A4 metabolism, and tissue-specific tubulin binding, and scaled this model to accurately simulate VBL PK in humans and pet dogs. To investigate the capability of the model to capture interindividual variability in clinical data, virtual populations of humans and pet dogs were generated through Monte Carlo simulation of physiologic and biochemical parameters and compared to the clinical PK data. This model provides a foundation for predictive modeling of VBL PK. The base PBPK model can be further improved with supplemental experimental data identifying drug-drug interactions, ABCB1 polymorphisms and expression, and other sources of physiologic or metabolic variability.


Asunto(s)
Antineoplásicos , Vinblastina , Humanos , Perros , Ratones , Animales , Vinblastina/farmacocinética , Citocromo P-450 CYP3A/genética , Antineoplásicos/farmacocinética , Interacciones Farmacológicas , Transporte Biológico
4.
BMC Bioinformatics ; 22(1): 15, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33413081

RESUMEN

BACKGROUND: One of the current directions of precision medicine is the use of computational methods to aid in the diagnosis, prognosis, and treatment of disease based on data driven approaches. For instance, in oncology, there has been a particular focus on development of algorithms and biomarkers that can be used for pre-clinical and clinical applications. In particular large-scale omics-based models to predict drug sensitivity in in vitro cancer cell line panels have been used to explore the utility and aid in the development of these models as clinical tools. Additionally, a number of web-based interfaces have been constructed for researchers to explore the potential of drug perturbed gene expression as biomarkers including the NCI Transcriptional Pharmacodynamic Workbench. In this paper we explore the influence of drug perturbed gene dynamics of the NCI Transcriptional Pharmacodynamics Workbench in computational models to predict in vitro drug sensitivity for 15 drugs on the NCI60 cell line panel. RESULTS: This work presents three main findings. First, our models show that gene expression profiles that capture changes in gene expression after 24 h of exposure to a high concentration of drug generates the most accurate predictive models compared to the expression profiles under different dosing conditions. Second, signatures of 100 genes are developed for different gene expression profiles; furthermore, when the gene signatures are applied across gene expression profiles model performance is substantially decreased when gene signatures developed using changes in gene expression are applied to non-drugged gene expression. Lastly, we show that the gene interaction networks developed on these signatures show different network topologies and can be used to inform selection of cancer relevant genes. CONCLUSION: Our models suggest that perturbed gene signatures are predictive of drug response, but cannot be applied to predict drug response using unperturbed gene expression. Furthermore, additional drug perturbed gene expression measurements in in vitro cell lines could generate more predictive models; but, more importantly be used in conjunction with computational methods to discover important drug disease relationships.


Asunto(s)
Antineoplásicos , Biología Computacional/métodos , Resistencia a Antineoplásicos , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/fisiología , Redes Reguladoras de Genes/efectos de los fármacos , Humanos
5.
BMC Med Genomics ; 12(1): 87, 2019 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-31208429

RESUMEN

BACKGROUND: The availability and generation of large amounts of genomic data has led to the development of a new paradigm in cancer treatment emphasizing a precision approach at the molecular and genomic level. Statistical modeling techniques aimed at leveraging broad scale in vitro, in vivo, and clinical data for precision drug treatment has become an active area of research. As a rapidly developing discipline at the crossroads of medicine, computer science, and mathematics, techniques ranging from accepted to those on the cutting edge of artificial intelligence have been utilized. Given the diversity and complexity of these techniques a systematic understanding of fundamental modeling principles is essential to contextualize influential factors to better understand results and develop new approaches. METHODS: Using data available from the Genomics of Drug Sensitivity in Cancer (GDSC) and the NCI60 we explore principle components regression, linear and non-linear support vector regression, and artificial neural networks in combination with different implementations of correlation based feature selection (CBF) on the prediction of drug response for several cytotoxic chemotherapeutic agents. RESULTS: Our results indicate that the regression method and features used have marginal effects on Spearman correlation between the predicted and measured values as well as prediction error. Detailed analysis of these results reveal that the bulk relationship between tissue of origin and drug response is a major driving factor in model performance. CONCLUSION: These results display one of the challenges in building predictive models for drug response in pan-cancer models. Mainly, that bulk genotypic traits where the signal to noise ratio is high is the dominant behavior captured in these models. This suggests that improved techniques of feature selection that can discriminate individual cell response from histotype response will yield more successful pan-cancer models.


Asunto(s)
Antineoplásicos/farmacología , Genómica , Modelos Estadísticos , Línea Celular Tumoral , Humanos , Análisis de Regresión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...